
magnetic pressure must be taken into consideration in the computations. 

The authors express gratitude to Yu. P. Raizer for interesting discussions of various 
aspects of the problems considered above. 
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ASYMPTOTIC ANALYSIS OF THE IGNITION OF A GAS BY A HEATED SURFACE 

V. S. Berman and Yu. S. Ryazantsev UDC 536.46 

The problem of the ignition of a homogeneous hot mixture is a classical problem of com- 
bustion theory. Along with the practical significance, its analysis offers the possibility 
of working out approximate analytic and numerical methods of solution, using one of the simp- 
lest problems of nonsteady combustion as an example. The problem of the ignition of a con- 
densed medium was first discussed in [i]. Gas ignition has been discussed numerically in a 
number of papers (for example, [2, 3] and the review [4]). Recently, efforts have been made 
to construct approximate analytic solutions of problems concerning ignition on the basis of 
the method of spliced asymptotic expansions. With the help of these methods an analysis has 
been carried out in [5, 6] of the ignition of a condensed phase by a luminous flux. The ig- 
nition of a condensed phase by a heated surface has been investigated in [7] by one of the 
authors.* 

*V. S. Berman, "Some problems of the theory of the propagation of a zone with exothermic chem- 
ical reactions in gaseous and condensed media," Candidate's Dissertation, Institute of Ap- 
plied Mechanics, Academy of Sciences of the USSR, Moscow (1974). 
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I. Statement of the Problem 

The one-dimensional problem of the ignition of a gas by a flat heated surface kept at 
constant temperature can be described with a number of simplifying assumptions by the follow- 
ing System of equations and boundary and initial conditions: 

pc 7/ = ~ yf -- rnc - ~  + Okp n (I -- y)n e ,E /RT;  (1.1) 

ay o (  a y )  az, e-~/Rr; Pa-F" = ~ "  Dp-~- - - m - ~ -  z q- kpn(l _ y ) n  (1.2) 

Sp la t '+  amlaz = 0; 

z = o, r = l"~, oy/Oz = O (m(z = O, t ' ) =  O); 

z = o o ,  T = T_, y = O; 

i'=0, T---- T_, y=0, 

(1.3) 

(l .4) 

(1.5) 

(1.6) 

where T is the temperature, y is the concentration of the product of the reaction, p(T) is 
the density, ~ is the thermal conductivity, c is the specific heat, z is the spatial coordin- 
ate, t' is the time, Q is the thermal effect of the reaction, k is the preexponential factor, 
E is the activation energy, n is the order of the reaction, R is the gas constant, D is the 
diffusion coefficient, m is the mass velocity of the gas motion, and T w and T are the tem- 
perature of the wall and the initial temperature of the gas, respectively. I~ was assumed 
in the formulation of the problem that the pressure stays constant; this situation corresponds 
to numerical estimates [2]. Let us transform from the variables t', z and t ~, ~ by the for- 
mulas 

m =" O~;lOt', p =O~laz, ~(z = O, t') = O. 

Then we obtain from (I.i)-(i. 3) 

aT a /^  aT \ 

at--7=-ff~ Dp o~ 

(1.7) 

(l.8) 

For simplicity we assume that 

Zp = const, r = const, Dp == const. 

Let us transform to the dimensionless variables - 

X = # / A x ;  t = t ' l A t ,  At = ~ '  
p~--ike--I~, 

(Ax)'= ~ A t / p w c ,  "~ , - ,  O(i), 
L = ~/Dpc, ? = c(Tw-- T_)/Q, r = T-ITw-- 2"_, 

o = (r  - r _ ) / ( r ~ - r _ ) ,  r(o)  = (plp~)--~, ~ = E/RT~. 

In place of (1.7), (1.8), and (1.4)-(1.6) it is possible to write 

~(e--i) 
8 8  a ~ e  , 
8-7=~ + ~(i-u)"r(O)e e+~ ," 

~(e--l) 
a._.ZY L - t  ~Y ..t_ o r = -  ~ - ~ ( I  y)"r(o)e ~+~ ; 

X = O, O = i, ~y/OX = O; 

(1.9) 

(i L10) 

(1.ii) 
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X = oo, 0 = 0 ,  Y=O;  

t = O ,  O = O ,  g = O .  

(1.12) 

(1.13) 

We will find the asymptotic solution of the problem corresponding to the initial stage 
of the process, assuming that 8 >> 1 and L, y, n, o, F, and dF/d| - I. 

2. Solution of the Problem 

Let us represent the solution | t) in the form of a sum 

O(X, t) = @i(X, t) + u (X ,  t), @~= erfc ( X / 2 - V ~  , 

where 0 i i s  the so lu t ion  of the problem 

O0/Ot = 020~/OX ~, 0~(0,  t) = I, O / ~ ,  t) = O~(X,  O) = O. 

Then the problem (1 .9) - (1 .13)  takes the form 

o~ = o2u ( ) 
ot "T~ + ~ ( l - g ) n F ( o ) e x p  ~(O~+u--0(o,+u+~) ; 

o-/- L - ~ g 2 ~ + 1 3 ( t - g ) ~ r ( e )  exp 1 3 ( ~  = O i + u + a  

u(O, t) = (Oy/OX)(O, t) = y(oo, t) = u(oo, t) = O, 

u ( x ,  o) = v ( x ,  o) = o. 

(2.1) 

(2.2) 

(2.3) 

Let us distinguish two spatial regions: the inner region adjacent to the point X = 0, 
where we introduce the variable x = Xfl, and the remaining part -- the outer region. The term 
which describes the chemical reaction in the outer region is exponentially small. 

Equations (2.1) and (2.2) take the form 

~~ = ~176 + -6-~ ( 1 -  v)'~ r ~ ( ~ (" - ~'~ V~)  ) T  ,4--5 + o (~)T; (2.4) 

fi~t ayot = L - i ~  ~ + IT(l_y),~Fexp(3(u-x/l~t+a'V'm))_[_o(+). (2.5) 

in the inner region. 

The solution of the problem is constructed in each of the regions in the form of asymp- 
totic expansions which are consistent with the initial conditions and which satisfy the con- 
ditions at X = 0 in the inner region and at X = = in the outer region. 

The inner and outer expansions should satisfy the splicing conditions [8, 9]. Analysis 
of different forms of the expansions shows that the so!utions in the inner and outer regions 
should be sought in the form 

u = u~(x, t)/f~ § u2(x, t ) /~"+ . . . ;  
y = Vo(X, t) + y~(x, t ) / ~ + . . . ;  

u = U I ( X  , t) /~ + U2(X , t ) / ~ 2 +  . . . ;  
g = Y o ( X ,  t) + Y , ( X ,  t)/~ + . . . .  

(2.6) 

(2.7) 

Substituting (2.6) into (2.4) and (2.5), with (2.3) taken into account, we have 

02uUOx ~ + (I -- yo) '~ exp ((u~ - - z / V ' ~ t ) / ( l  + a)) = O, (2.8) 

u~(0, t) = u~(x, 0) = 0; 
O~yo/Ox2= 0,  (Ogo/Ox)(O, t) = 0; 

(2.9) 
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L-*O2yxlOx~+ y(t - -  Yo)" exp ((u x - -  x , ' V ~ ) / ( t  -5 (r)) = O, 

(Oyilax)(O, t) = O. 
(2.  i0) 

From (2.9) it follows that yo " yo(t)j then the general solution of Eq. (2.8) has the form 

ut(z,  t) = x /V '~ t  -5 (1 -5 (~) [ -n  In (t - yo) -5 In Cz - 2 In oh(C1 '-- xl/' C~/2(t + (D)i. ( 2 . 1 1 )  

Here C, = Cx(t) 

0 we find 
and C2 = C2(t) are some functions of t. From the boundary condition at x = 

CJ(I  -- Yo)" = chZC1, 

C~ = ln[V'c~/(1 --  Yo)" q- V'lCv;(l - yo)"l - 11. 

(2.6) and(2.7) we obtain from (2.11) For the splicing of the main terms of 
expression for u, as x § ~: 

(2.12) 

an asymptotic 

u~(x --)-e~, t) = x(I /V' ,~"{-  1 ;2( t  + (r)c2) + (1 4 (r) • 

• l - n l n  (1 - go) + In C, + 2C~ -5 in 4] + o(1) = X I ~ ( I / V ' ~ ' -  

- -  V 2 ( t  + o)c~.) - (t + o ) [ -  n l n ( l  - g o )  + InC2 + 2c~ + ln4]  -5 o(1), (2.13) 

Comparing (2.13) with the corresponding expansions (2.7), we obtain 

C ~ =  "colt; % =  ( l /2 )n( l  § a), 

U,(O, t) = / ( t )  = (l/2:z~ro)I-- nln(l  - -  go) + lnC~-- 2C 1 -  ln4l.  
(2.14) 

Equations (2.14) determine the form of the function (2.11) and of the boundary condition for 
U,(X, t). In order to satisfy the initial condition (2.8), it is necessary to select the 
plus sign in (2.12). The solutions in the outer region should satisfy the equations and 
boundary conditions 

OUi/Ot = 02UI/OX ~, 

U~(X ---,-O, t) = / ( t ) ,  U J ~ ,  t) = U~(X, O) = O; 

OYolOt = (02r oiOX"-)L-,, 

Yo(X --+0, t) = go(t), Yo(zo, t) = Yo(X, O) = O, 

whence 

t 

= ~ ] S(t') <,_, >3j U 1 (X, t) X exp [-- X214 (t -- t')] dr'; 
u 

XL~/Z C [ - -  X~'L]4 ~t - -  t')] 
Yo (X, t) = 2 ~ ~ go (t') exp ( t - -  t') s/z dt', 

(2.15) 

As X § 0, we have from (2.15) 

Yo ( x  ~ O, t) = .Vo (t) 

t 

x v~t.o f ~; (j_'! I / ,  - c 

t 

- -  dr'  = Yo (t)  - T --R- -~T Vt-- -c?,  

Equation (2.16) represents Yo in a form convenient for splicing with y,(x, 
(2.10), it is possible to obtain 

o~__.__Ly[o~ V.~ ~ ]/ thC, 
O x  " 

_ _  d t ' .  (2.16) 

t). Integrating 

(2.17) 
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We obta%n an integral equation for yo(t): 

t 

dt V ~ V  VT 
o 

t ]/: ~~ - (t -yo)"] 
V~ - r  

(2 .18)  

from (2.17) with x § = and from (2.16), having used the splicing condition. 

Let us introduce the new variable T = t/to and yo(t) = z(T); then it is possible to 

write 

(2.19) 

instead of (2.18). Equation (2.18) is.applicable inthe time interval 0 ~ t S t* [yo(t*) = i -- 

(to/t*) ' /n] .  
Let us determine the time dependence of the heat flux into the heated wall 

o o / O X l z . o  = ~OOlOx = - ] /  C2/~olth(C1) + o(t). (2 .20)  

Adopting the instant at which the heat flux into the wall vanishes as the instant of igni- 
tion, we conclude from (2.20) that this time is equal to t*. 

We note that the time of ignition t*, which is a function of the parameters To, y, L, 
n, and 8, can in this approximation be expressed in the formof a function of just two vari- 

ables: 

t *~o=  F(r n); e = ~]/-F, % =  t/2~(1 -k a). 

Equation (2.19) is valid at large but finite valuesof $ if ~ = o(i) and t*/To8 << I. Equa- 
tion (2.19), written in the form 

dT J ~ = ~" 3/~ ' (2 ,21)  
o 

was solved numerically. 

Expressing z(r) from (2.21), we have 

i 

8 S F (Tz,'z (~z)) n~ 
z ( ~ ) = ~  ~ (i.i/71r=~_ ~) ~ .  

o 

Introducing T k = kh, k = O, i, 2, ..., we have 

i 

f r('k x' ~(+~,=)1 

i , I 7/: 
~,o ~ " I / / I  0 , 4  /L]v* l ' 

1__.-.' ~ 

v L'~J c,e ~2 e 

Fig. i 
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Extrapolation between the nodes Tk_~ , and ~k was carried out from the two preceding points 
Tk_ , and Tk_2. The numerical solution of (2.19) for n = i is given in Fig. i. As an ex- 
ample, let us discuss the case of the course of a zero-order reaction. The rate of the chem- 
ical reaction is equal to k exp (--E/RT) for 0 E Y ~ I and vanishes for y > i. The solution 
of (2.19) is of the form 

z(~) = 8 [ t  - ( 2 / = ) E ( V ~ )  1, 

where E(x) is the complete elliptic integral. For 0 < ~ s ~/(~ -- 2) = 2.752, the ignition 
time T* = i, and z(T*) = ~ [(n -- 2)/~]. For r < 2.752, the chemical reaction ceases at the 
instant T = T + [z(T +) = i], where r + is the root of the equation 1 = ell -- (2/~)E(V~F)]. 

, 

2. 

. 

. 

5. 

6. 

7. 

g 

9. 
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NUMERICAL STUDY OF THE EFFECT OF SURFACE THERMAL CONDITIONS ON 

FLOW IN THE BASE REGION OF A BODY OF FINITE DIMENSIONS 

A. V. Babakov and L. I. Severinov UDC 533.6.011 

The results of the present work are obtained using the method of "fluxes" [i], which 
has properties of conservativity with respect to mass, momentum, and total energy. A char- 
acteristic feature of the method is the asymmetrical approximation of the convective terms. 

It is assumed that the gas is Newtonian and perfect, has constant specific heat capaci- 
ties, the coefficient of viscosity B depends on the temperature in accordance with the law 

~ T ~ (~ = const), and the Prandtl number Pr is constant. Moreover, the Stokes hypothesis 
of the equality of the pressureand of the arithmetic mean of the three principal stresses 
with the opposite sign is satisfied. The calculations were carried out in the following co- 
ordinate system: the x axis is directed along the surface of the sphere, the y axis along 
the local normal to it, and the origin is placed at the leading critical point. We intro- 
duce the following notation: u and v are the velocity components along x and y; p, p, and T 
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